A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

An Algebraic Geometric Approach to Multidimensional Words




TekijätKari J, Szabados M

ToimittajaAndreas Maletti

Konferenssin vakiintunut nimiInternational Conference on Algebraic Informatics

KustantajaSPRINGER INT PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND

KustannuspaikkaBerlin

Julkaisuvuosi2015

Kokoomateoksen nimiAlgebraic Informatics

Tietokannassa oleva lehden nimiALGEBRAIC INFORMATICS (CAI 2015)

Lehden akronyymiLECT NOTES COMPUT SC

Sarjan nimiTheoretical computer science and general issues

Numero sarjassa9270

Vuosikerta9270

Aloitussivu29

Lopetussivu42

Sivujen määrä14

ISBN978-3-319-23021-4

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-319-23021-4_3


Tiivistelmä

We apply linear algebra and algebraic geometry to study infinite multidimensional words of low pattern complexity. By low complexity we mean that for some finite shape, the number of distinct sub-patterns of that shape that occur in the word is not more than the size of the shape. We are interested in discovering global regularities and structures that are enforced by such low complexity assumption. We express the word as a multivariate formal power series over integers. We first observe that the low pattern complexity assumption implies that there is a non-zero polynomial whose formal product with the power series is zero. We call such polynomials the annihilators of the word. The annihilators form an ideal, and using Hilbert's Nullstellensatz we construct annihilators of simple form. In particular, we prove a decomposition of the word as a sum of finitely many periodic power series. We consider in more details a particular interesting example of a low complexity word whose periodic decomposition contains necessarily components with infinitely many distinct coefficients. We briefly discuss applications of our technique in the Nivat's conjecture and the periodic tiling problem. The results reported here have been first discussed in a paper that we presented at ICALP 2015.



Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:28