A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Information Extraction to Improve Standard Compliance The Case of Clinical Handover
Tekijät: Zhou LY, Suominen H
Toimittaja: Pfahringer, B; Renz, J
Konferenssin vakiintunut nimi: Australasian Joint Conference on Artificial Intelligence
Kustantaja: SPRINGER-VERLAG NEW YORK, MS INGRID CUNNINGHAM, 175 FIFTH AVE, NEW YORK, NY 10010 USA
Julkaisuvuosi: 2015
Journal: Lecture Notes in Computer Science
Kokoomateoksen nimi: AI 2015: Advances in Artificial Intelligence
Tietokannassa oleva lehden nimi: AI 2015: ADVANCES IN ARTIFICIAL INTELLIGENCE
Lehden akronyymi: LECT NOTES ARTIF INT
Vuosikerta: 9457
Aloitussivu: 644
Lopetussivu: 649
Sivujen määrä: 6
ISBN: 978-3-319-26349-6
ISSN: 0302-9743
DOI: https://doi.org/10.1007/978-3-319-26350-2_57
Clinical handover refers to healthcare workers transferring responsibility and accountability for patient care, e.g., between shifts or wards. Safety and quality health standards call for this process to be systematically structured across the organisation and synchronous with its documentation. This paper evaluates information extraction as a way to help comply with these standards. It implements the handover process of first specifying a structured handover form, whose hierarchy of headings guides the handover narrative, followed by the technology filling it out objectively and almost instantly for proofing and sign-off. We trained a conditional random field with 8 feature types on 101 expert-annotated documents to 36-class classify. This resulted in good generalisation to an independent set of 50 validation and 50 test documents that we now release: 77.9 % F1 in filtering out irrelevant information, up to 98.4 % F1 for the 35 classes for relevant information, and 52.9 % F1 after macro-averaging over these 35 classes, whilst these percentages were 86.2, 100.0, and 70.2 for the leave-one-document-out cross-validation across the first set of 101 documents. Also as a result of this study, the validation and test data were released to support further research.