A1 Refereed original research article in a scientific journal
Differential effects of estrogen/androgen on the prevention of nonalcoholic fatty liver disease in the male rat
Authors: Zhang H, Liu Y, Wang L, Li Z, Zhang H, Wu J, Rahman N, Guo Y, Li D, Li N, Huhtaniemi I, Tsang SY, Gao GF, Li X
Publisher: AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Publishing place: BETHESDA; 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
Publication year: 2013
Journal: Journal of Lipid Research
Journal name in source: Journal of lipid research
Journal acronym: J.Lipid Res.
Number in series: 2
Volume: 54
Issue: 2
First page : 345
Last page: 357
Number of pages: 13
ISSN: 0022-2275
DOI: https://doi.org/10.1194/jlr.M028969
Abstract
It is important to clarify the distinct contributions of estrogen/estrogen receptor (ER) and androgen/androgen receptor (AR) signaling and their reciprocal effects on the regulation of hepatic lipid homeostasis. We studied the molecular mechanisms underlying the preventive effects of estradiol (E2), dihydrotestosterone (DHT), or E2+DHT on high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in an orchidectomized Sprague-Dawley (SD) rat model. E2 is shown to be associated with decreased fatty acid synthesis in hepatic zone 3-specific manner by increasing the phosphorylation of acetyl coenzyme-A carboxylase via an ERα-mediated pathway. DHT is shown to be associated with decreased lipid accumulation and cholesterol synthesis in a hepatic zone 1-specific manner by increasing expression of carnitine palmitotyltransferase1 and phosphorylation of 3-hydroxy-3-methyl-glutaryl-CoA reductase via an AR-mediated pathway. E2+DHT showed an additive positive effect and normalized all three impaired zones of the liver. Gene expression changes in human severe liver steatosis were similar to those of experimental rat NAFLD. Steroids reversed the histopathological NAFLD changes, likely by decreasing fatty acid and cholesterol synthesis and increasing β-oxidation. The diverse steroid effects (ER/AR) on NAFLD prevention in male rats indicate the potential applicability of ER/AR modulators for NAFLD treatment.
It is important to clarify the distinct contributions of estrogen/estrogen receptor (ER) and androgen/androgen receptor (AR) signaling and their reciprocal effects on the regulation of hepatic lipid homeostasis. We studied the molecular mechanisms underlying the preventive effects of estradiol (E2), dihydrotestosterone (DHT), or E2+DHT on high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in an orchidectomized Sprague-Dawley (SD) rat model. E2 is shown to be associated with decreased fatty acid synthesis in hepatic zone 3-specific manner by increasing the phosphorylation of acetyl coenzyme-A carboxylase via an ERα-mediated pathway. DHT is shown to be associated with decreased lipid accumulation and cholesterol synthesis in a hepatic zone 1-specific manner by increasing expression of carnitine palmitotyltransferase1 and phosphorylation of 3-hydroxy-3-methyl-glutaryl-CoA reductase via an AR-mediated pathway. E2+DHT showed an additive positive effect and normalized all three impaired zones of the liver. Gene expression changes in human severe liver steatosis were similar to those of experimental rat NAFLD. Steroids reversed the histopathological NAFLD changes, likely by decreasing fatty acid and cholesterol synthesis and increasing β-oxidation. The diverse steroid effects (ER/AR) on NAFLD prevention in male rats indicate the potential applicability of ER/AR modulators for NAFLD treatment.