A1 Refereed original research article in a scientific journal
Perception of matching and conflicting audiovisual speech in dyslexic and fluent readers: an fMRI study at 3 T.
Authors: Pekkola, Laasonen, Ojanen, Autti, Jääskeläinen, Kujala, Sams
Publication year: 2006
Journal: NeuroImage
Journal name in source: NeuroImage
Journal acronym: Neuroimage
Volume: 29
Issue: 3
First page : 797
Last page: 807
Number of pages: 11
ISSN: 1053-8119
DOI: https://doi.org/10.1016/j.neuroimage.2005.09.069
Abstract
We presented phonetically matching and conflicting audiovisual vowels to 10 dyslexic and 10 fluent-reading young adults during "clustered volume acquisition" functional magnetic resonance imaging (fMRI) at 3 T. We further assessed co-variation between the dyslexic readers' phonological processing abilities, as indexed by neuropsychological test scores, and BOLD signal change within the visual cortex, auditory cortex, and Broca's area. Both dyslexic and fluent readers showed increased activation during observation of phonetically conflicting compared to matching vowels within the classical motor speech regions (Broca's area and the left premotor cortex), this activation difference being more extensive and bilateral in the dyslexic group. The between-group activation difference in conflicting > matching contrast reached significance in the motor speech regions and in the left inferior parietal lobule, with dyslexic readers exhibiting stronger activation than fluent readers. The dyslexic readers' BOLD signal change co-varied with their phonological processing abilities within the visual cortex and Broca's area, and to a lesser extent within the auditory cortex. We suggest these findings as reflecting dyslexic readers' greater use of motor-articulatory and visual strategies during phonetic processing of audiovisual speech, possibly to compensate for their difficulties in auditory speech perception.
We presented phonetically matching and conflicting audiovisual vowels to 10 dyslexic and 10 fluent-reading young adults during "clustered volume acquisition" functional magnetic resonance imaging (fMRI) at 3 T. We further assessed co-variation between the dyslexic readers' phonological processing abilities, as indexed by neuropsychological test scores, and BOLD signal change within the visual cortex, auditory cortex, and Broca's area. Both dyslexic and fluent readers showed increased activation during observation of phonetically conflicting compared to matching vowels within the classical motor speech regions (Broca's area and the left premotor cortex), this activation difference being more extensive and bilateral in the dyslexic group. The between-group activation difference in conflicting > matching contrast reached significance in the motor speech regions and in the left inferior parietal lobule, with dyslexic readers exhibiting stronger activation than fluent readers. The dyslexic readers' BOLD signal change co-varied with their phonological processing abilities within the visual cortex and Broca's area, and to a lesser extent within the auditory cortex. We suggest these findings as reflecting dyslexic readers' greater use of motor-articulatory and visual strategies during phonetic processing of audiovisual speech, possibly to compensate for their difficulties in auditory speech perception.