A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Regional differences in blood flow, glucose uptake and fatty acid uptake within quadriceps femoris muscle during dynamic knee-extension exercise
Tekijät: Laaksonen MS, Kemppainen J, Kyrolainen H, Knuuti J, Nuutila P, Kalliokoski KK
Kustantaja: SPRINGER
Julkaisuvuosi: 2013
Journal: European Journal of Applied Physiology
Tietokannassa oleva lehden nimi: EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
Lehden akronyymi: EUR J APPL PHYSIOL
Numero sarjassa: 7
Vuosikerta: 113
Numero: 7
Aloitussivu: 1775
Lopetussivu: 1782
Sivujen määrä: 8
ISSN: 1439-6319
DOI: https://doi.org/10.1007/s00421-013-2609-8
Tiivistelmä
The purpose of the present study was to investigate the regional differences in glucose and fatty acid uptake within skeletal muscle during exercise. Blood flow (BF), glucose uptake (GU) and free fatty acid uptake (FFAU) were measured in four different regions (vastus lateralis, VL; rectus femoris, RF; vastus intermedius, VI; and vastus medialis, VM) of the quadriceps femoris (QF) muscle during low-intensity, knee-extension exercise using positron emission tomography. BF was higher in VI than in VL, RF and VM (P < 0.05). FFAU was higher in VI (P < 0.001) but also in VM (P < 0.05) compared with VL and RF. In contrast, GU was higher in RF compared with VL (P < 0.05) but was not significantly different to VM or VI (both P = NS). FFAU within these four muscle regions correlated significantly with BF (r = 0.951, P < 0.05), whereas no significant relationship was observed between GU and BF (r = 0.352, P = NS). Therefore, skeletal muscle FFAU, but not GU, appears to be associated with BF during low-intensity exercise. The present results also indicate considerable regional differences in substrate use within working QF muscle. As such, an important methodological outcome from these results is that one sample from a specific part of the QF muscle does not represent the response in the entire QF muscle group.
The purpose of the present study was to investigate the regional differences in glucose and fatty acid uptake within skeletal muscle during exercise. Blood flow (BF), glucose uptake (GU) and free fatty acid uptake (FFAU) were measured in four different regions (vastus lateralis, VL; rectus femoris, RF; vastus intermedius, VI; and vastus medialis, VM) of the quadriceps femoris (QF) muscle during low-intensity, knee-extension exercise using positron emission tomography. BF was higher in VI than in VL, RF and VM (P < 0.05). FFAU was higher in VI (P < 0.001) but also in VM (P < 0.05) compared with VL and RF. In contrast, GU was higher in RF compared with VL (P < 0.05) but was not significantly different to VM or VI (both P = NS). FFAU within these four muscle regions correlated significantly with BF (r = 0.951, P < 0.05), whereas no significant relationship was observed between GU and BF (r = 0.352, P = NS). Therefore, skeletal muscle FFAU, but not GU, appears to be associated with BF during low-intensity exercise. The present results also indicate considerable regional differences in substrate use within working QF muscle. As such, an important methodological outcome from these results is that one sample from a specific part of the QF muscle does not represent the response in the entire QF muscle group.