A1 Refereed original research article in a scientific journal

Evolutionary suicide and evolution of dispersal in structured metapopulations




AuthorsGyllenberg M, Parvinen K, Dieckmann U

PublisherSPRINGER-VERLAG

Publication year2002

JournalJournal of Mathematical Biology

Journal name in sourceJOURNAL OF MATHEMATICAL BIOLOGY

Journal acronymJ MATH BIOL

Volume45

Issue2

First page 79

Last page105

Number of pages27

ISSN0303-6812

DOIhttps://doi.org/10.1007/s002850200151


Abstract
We study the evolution of dispersal in a structured metapopulation model. The metapopulation consists of a large (infinite) number of local populations living in patches of habitable environment. Dispersal between patches is modelled by a disperser pool and individuals in transit between patches are exposed to a risk of mortality. Occasionally, local catastrophes eradicate a local population: all individuals in the affected patch die, yet the patch remains habitable. We prove that, in the absence of catastrophes, the strategy not to migrate is evolutionarily stable. Under a given set of environmental conditions, a metapopulation may be viable and yet selection may favor dispersal rates that drive the metapopulation to extinction. This phenomenon is known as evolutionary suicide. We show that in our model evolutionary suicide can occur for catastrophe rates that increase with decreasing local population size. Evolutionary suicide can also happen for constant catastrophe rates, if local growth within patches shows an Allee effect. We study the evolutionary bifurcation towards evolutionary suicide and show that a discontinuous transition to extinction is a necessary condition for evolutionary suicide to occur. In other words, if population size smoothly approaches zero at a boundary of viability in parameter space, this boundary is evolutionarily repelling and no suicide can occur.



Last updated on 2024-26-11 at 21:19