A1 Refereed original research article in a scientific journal
Structural modeling and environmental regulation of arginine decarboxylase in Synechocystis sp PCC 6803
Authors: Jantaro S, Kidron H, Chesnel D, Incharoensakdi A, Mulo P, Salminen T, Maenpaa P
Publisher: SPRINGER
Publication year: 2006
Journal: Archives of Microbiology
Journal name in source: ARCHIVES OF MICROBIOLOGY
Journal acronym: ARCH MICROBIOL
Volume: 184
Issue: 6
First page : 397
Last page: 406
Number of pages: 10
ISSN: 0302-8933
DOI: https://doi.org/10.1007/s00203-005-0064-6(external)
Abstract
Arginine decarboxylase (ADC) is the first enzyme in the alternative route to putrescine in the polyamine biosynthesis pathway in bacteria and plants. In this study, we have focused on the effects of various types of short-term stresses on the transcript amount and specific activity of Synechocystis sp. PCC 6803 ADC. Our results reveal that the steady-state transcript accumulation and enzyme activity are not connected in a simple manner, since only photoheterotrophy and synergistic salt and high-light stress affected both parameters similarly. Changes in the steady-state ADC mRNA accumulation under the other short-term stress conditions studied had only a small impact on enzyme activity, suggesting post-translational regulation. Based on structural modeling, Synechocystis ADCs have a putative extra domain, which might be involved in the post-translational regulation of ADC activity in Synechocystis. In addition, two symmetric inter-subunit disulfide bonds seem to stabilize the dimeric structure of ADCs. There are two genes coding for ADC and agmatinase, another polyamine pathway enzyme, in Synechocystis genome, while the genes coding for ornithine decarboxylase and for some other enzymes in the polyamine pathway were not identified with homology searches.
Arginine decarboxylase (ADC) is the first enzyme in the alternative route to putrescine in the polyamine biosynthesis pathway in bacteria and plants. In this study, we have focused on the effects of various types of short-term stresses on the transcript amount and specific activity of Synechocystis sp. PCC 6803 ADC. Our results reveal that the steady-state transcript accumulation and enzyme activity are not connected in a simple manner, since only photoheterotrophy and synergistic salt and high-light stress affected both parameters similarly. Changes in the steady-state ADC mRNA accumulation under the other short-term stress conditions studied had only a small impact on enzyme activity, suggesting post-translational regulation. Based on structural modeling, Synechocystis ADCs have a putative extra domain, which might be involved in the post-translational regulation of ADC activity in Synechocystis. In addition, two symmetric inter-subunit disulfide bonds seem to stabilize the dimeric structure of ADCs. There are two genes coding for ADC and agmatinase, another polyamine pathway enzyme, in Synechocystis genome, while the genes coding for ornithine decarboxylase and for some other enzymes in the polyamine pathway were not identified with homology searches.