A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Weak abelian periodicity of infinite words.
Tekijät: S Avgustinovich, S Puzynina
Toimittaja: A Bulatov, A Shur
Julkaisuvuosi: 2013
Journal: Lecture Notes in Computer Science
Kokoomateoksen nimi: Computer Science - Theory and Applications
Sarjan nimi: LNCS
Aloitussivu: 258
Lopetussivu: 270
Sivujen määrä: 13
ISBN: 978-3-642-38535-3
eISBN: 978-3-642-38536-0
ISSN: 0302-9743
DOI: https://doi.org/10.1007/978-3-642-38536-0
Tiivistelmä
We say that an infinite word w is weak abelian periodic if it can be factorized into finite words with the same frequencies of letters. In the paper we study properties of weak abelian periodicity, its relations with balance and frequency. We establish necessary and sufficient conditions for weak abelian periodicity of fixed points of uniform binary morphisms. Also, we discuss weak abelian periodicity in minimal subshifts.
We say that an infinite word w is weak abelian periodic if it can be factorized into finite words with the same frequencies of letters. In the paper we study properties of weak abelian periodicity, its relations with balance and frequency. We establish necessary and sufficient conditions for weak abelian periodicity of fixed points of uniform binary morphisms. Also, we discuss weak abelian periodicity in minimal subshifts.