A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

k-Abelian Equivalence and Rationality




TekijätJulien Cassaigne, Karhumäki Juhani, Puzynina Svetlana, Whiteland Markus

ToimittajaS. Brlek and C. Reutenauer

Konferenssin vakiintunut nimiInternational Conference on Developments in Language Theory

KustannuspaikkaBerlin

Julkaisuvuosi2016

Kokoomateoksen nimiDevelopments in Language Theory, 20th International Conference, DLT 2016

Sarjan nimiLecture Notes in Computer Science

Vuosikerta9840

Aloitussivu77

Lopetussivu88

Sivujen määrä12

ISBN978-3-662-53131-0

eISBN978-3-662-53132-7

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-662-53132-7_7


Tiivistelmä

Two words $u$ and $v$ are said to be $k$-abelian equivalent if, for each word $x$ of length at
most $k$, the number of occurrences of $x$ as a factor of $u$ is the same as for $v$. We study
some combinatorial properties of $k$-abelian equivalence classes. Our starting point is a
characterization of $k$-abelian equivalence by rewriting, so-called $k$-switching. We show that
the set of lexicographically least representatives of equivalence classes is a regular language.
From this we infer that the sequence of the numbers of equivalence classes is $N$-rational. We
also show that the set of words defining $k$-abelian singleton classes is regular.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 16:18