A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R




TekijätHelske Jouni

Julkaisuvuosi2022

JournalSoftwareX

Tietokannassa oleva lehden nimiSoftwareX

Vuosikerta18

DOIhttps://doi.org/10.1016/j.softx.2022.101016


Tiivistelmä
The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as changes in tax policy which gradually increases their effect over time. The Markov chain Monte Carlo algorithms powering the Bayesian inference are based on Hamiltonian Monte Carlo provided by Stan software, using a state space representation of the model to marginalize over the regression coefficients for efficient low-dimensional sampling.



Last updated on 2024-26-11 at 15:08