A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Commercial carbon nanotube as rear contacts for industrial p-type silicon solar cells with an efficiency exceeding 23%
Tekijät: Gao Q, Yan J, Li H, Chen JW, Yang XL, Bai YH, Zhang XN, Chen BB, Guo JX, Duan WY, Han KX, Li F, Wang JM, Song DY, Wang SF, Flavel BS, Chen JH
Kustantaja: PERGAMON-ELSEVIER SCIENCE LTD
Julkaisuvuosi: 2023
Journal: Carbon
Tietokannassa oleva lehden nimi: CARBON
Lehden akronyymi: CARBON
Vuosikerta: 202
Numero: Pt. 1
Aloitussivu: 432
Lopetussivu: 437
Sivujen määrä: 6
ISSN: 0008-6223
DOI: https://doi.org/10.1016/j.carbon.2022.11.020
Tiivistelmä
Commercially available single wall carbon nanotube (SWCNT) soots are combined with an organic passivation scheme and shown to be an efficient rear contact and alternative to ALD-Al2O3/PECVD-SiNx/laser treatment in conventional passivated emitter and rear cell (PERC) solar cells. Both low carbonaceous purity 60-70% and 95% SWCNTs are tested and a power conversion efficiency of over 23% is demonstrated. The approach is simple, scalable and completely eliminates the metal-semiconductor contact known to cause high interfacial recombi-nation in PERC technology. A low reverse saturation current density (J0) is achieved by varying the concen-tration and species of SWCNTs used and a full-area back surface field on an industrial sized (275.54 cm2) solar cell is obtained.
Commercially available single wall carbon nanotube (SWCNT) soots are combined with an organic passivation scheme and shown to be an efficient rear contact and alternative to ALD-Al2O3/PECVD-SiNx/laser treatment in conventional passivated emitter and rear cell (PERC) solar cells. Both low carbonaceous purity 60-70% and 95% SWCNTs are tested and a power conversion efficiency of over 23% is demonstrated. The approach is simple, scalable and completely eliminates the metal-semiconductor contact known to cause high interfacial recombi-nation in PERC technology. A low reverse saturation current density (J0) is achieved by varying the concen-tration and species of SWCNTs used and a full-area back surface field on an industrial sized (275.54 cm2) solar cell is obtained.