TIMMA-R: an R package for predicting synergistic multi-targeted drug combinations in cancer cell lines or patient-derived samples




He LY, Wennerberg K, Aittokallio T, Tang J

PublisherOXFORD UNIV PRESS

2015

Bioinformatics

BIOINFORMATICS

BIOINFORMATICS

31

11

1866

1868

3

1367-4803

1460-2059

DOIhttps://doi.org/10.1093/bioinformatics/btv067



Network pharmacology-based prediction of multi-targeted drug combinations is becoming a promising strategy to improve anticancer efficacy and safety. We developed a logic-based network algorithm, called Target Inhibition Interaction using Maximization and Minimization Averaging (TIMMA), which predicts the effects of drug combinations based on their binary drug-target interactions and single-drug sensitivity profiles in a given cancer sample. Here, we report the R implementation of the algorithm (TIMMA-R), which is much faster than the original MATLAB code. The major extensions include modeling of multiclass drug-target profiles and network visualization. We also show that the TIMMA-R predictions are robust to the intrinsic noise in the experimental data, thus making it a promising high-throughput tool to prioritize drug combinations in various cancer types for follow-up experimentation or clinical applications.



Last updated on 2024-26-11 at 11:33