A1 Refereed original research article in a scientific journal
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
Authors: Sieberts SK, Zhu F, Garcia-Garcia J, Stahl E, Pratap A, Pandey G, Pappas D, Aguilar D, Anton B, Bonet J, Eksi R, Fornes O, Guney E, Li HD, Marin MA, Panwar B, Planas-Iglesias J, Poglayen D, Cui J, Falcao AO, Suver C, Hoff B, Balagurusamy VSK, Dillenberger D, Neto EC, Norman T, Aittokallio T, Ammad-ud-din M, Azencott CA, Bellon V, Boeva V, Bunte K, Chheda H, Cheng L, Corander J, Dumontier M, Goldenberg A, Gopalacharyulu P, Hajiloo M, Hidru D, Jaiswal A, Kaski S, Khalfaoui B, Khan SA, Kramer ER, Marttinen P, Mezlini AM, Molparia B, Pirinen M, Saarela J, Samwald M, Stoven V, Tang H, Tang J, Torkamani A, Vert JP, Wang B, Wang T, Wennerberg K, Wineinger NE, Xiao GH, Xie Y, Yeung R, Zhan XW, Zhao C, Greenberg J, Kremer J, Michaud K, Barton A, Coenen M, Mariette X, Miceli C, Shadick N, Weinblatt M, de Vries N, Tak PP, Gerlag D, Huizinga TWJ, Kurreeman F, Allaart CF, Bridges SL, Criswell L, Moreland L, Klareskog L, Saevarsdottir S, Padyukov L, Gregersen PK, Friend S, Plenge R, Stolovitzky G, Oliva B, Guan YF, Mangravite LM
Publisher: NATURE PUBLISHING GROUP
Publication year: 2016
Journal: Nature Communications
Journal name in source: NATURE COMMUNICATIONS
Journal acronym: NAT COMMUN
Article number: ARTN 12460
Volume: 7
Number of pages: 9
ISSN: 2041-1723
DOI: https://doi.org/10.1038/ncomms12460
Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in Bone-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2) = 0.18, P value = 0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.
Downloadable publication This is an electronic reprint of the original article. |