A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A community effort to assess and improve drug sensitivity prediction algorithms




TekijätCostello JC, Heiser LM, Georgii E, Gonen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA, Mpindi JP, Kallioniemi O, Honkela A, Aittokallio T, Wennerberg K, Collins JJ, Gallahan D, Singer D, Saez-Rodriguez J, Kaski S, Gray JW, Stolovitzky G

KustantajaNATURE PUBLISHING GROUP

Julkaisuvuosi2014

JournalNature Biotechnology

Tietokannassa oleva lehden nimiNATURE BIOTECHNOLOGY

Lehden akronyymiNAT BIOTECHNOL

Vuosikerta32

Numero12

Aloitussivu1202

LopetussivuU57

Sivujen määrä13

ISSN1087-0156

DOIhttps://doi.org/10.1038/nbt.2877


Tiivistelmä
Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.



Last updated on 2024-26-11 at 21:20