A1 Refereed original research article in a scientific journal

Life-history variation predicts the effects of demographic stochasticity on avian population dynamics




AuthorsSaether BE, Engen S, Moller AP, Weimerskirch H, Visser ME, Fiedler W, Matthysen E, Lambrechts MM, Badyaev A, Becker PH, Brommer JE, Bukacinski D, Bukacinska M, Christensen H, Dickinson J, du Feu C, Gehlbach FR, Heg D, Hotker H, Merila J, Nielsen JT, Rendell W, Robertson RJ, Thomson DL, Torok J, Van Hecke P

PublisherUNIV CHICAGO PRESS

Publication year2004

Journal:American Naturalist

Journal name in sourceAMERICAN NATURALIST

Journal acronymAM NAT

Volume164

Issue6

First page 793

Last page802

Number of pages10

ISSN0003-0147

DOIhttps://doi.org/10.1086/425371


Abstract
Comparative analyses of avian population fluctuations have shown large interspecific differences in population variability that have been difficult to relate to variation in general ecological characteristics. Here we show that interspecific variation in demographic stochasticity, caused by random variation among individuals in their fitness contributions, can be predicted from a knowledge of the species' position along a "slow-fast" gradient of life-history variation, ranging from high reproductive species with short life expectancy at one end to species that often produce a single offspring but survive well at the other end of the continuum. The demographic stochasticity decreased with adult survival rate, age at maturity, and generation time or the position of the species toward the slow end of the slow-fast life-history gradient. This relationship between life-history characteristics and demographic stochasticity was related to interspecific differences in the variation among females in recruitment as well as to differences in the individual variation in survival. Because reproductive decisions in birds are often subject to strong natural selection, our results provide strong evidence for adaptive modifications of reproductive investment through life-history evolution of the influence of stochastic variation on avian population dynamics.



Last updated on 2025-14-10 at 09:47