A1 Refereed original research article in a scientific journal

Covariant phase observables




AuthorsPellonpaa JP

PublisherWILEY-V C H VERLAG GMBH

Publication year2003

Journal:Fortschritte der Physik / Progress of Physics

Journal name in sourceFORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS

Journal acronymFORTSCHR PHYS

Volume51

Issue2-3

First page 207

Last page210

Number of pages4

ISSN0015-8208

DOIhttps://doi.org/10.1002/prop.200310028


Abstract
Covariant phase observables constitute a simple solution of the quantum phase problem of a single-mode optical field. They share three important properties: their range of values is the phase interval [0, 2pi), they are covariant under shifts generated by the number operator (which is necessary for coherent state phase measurements), and they have the uniform phase distribution in number states. Moreover, some phase observables have been measured (e.g. the phase observable associated to the Q-function). The canonical phase observable has some additional properties which distinguish it from other covariant phase observables: it generates number shifts, it is uniquely associated to the polar decomposition of the lowering operator (Dirac's idea [1]), it has a projection valued covariant dilation (Newton's extension [2]), and it has a projection valued discretization. (the Pegg-Barnett formalism [3]). The single-mode covariant phase theory can easily be extended to the two-mode theory of covariant phase difference observables. Finally, most of all phase theories have connections to the covariant phase theory.



Last updated on 2025-14-10 at 09:38