Vertaisarvioitu alkuperäisartikkeli tai data-artikkeli tieteellisessä aikakauslehdessä (A1)

Mean value of real Dirichlet characters using a double Dirichlet series




Julkaisun tekijätČech Martin

KustantajaCAMBRIDGE UNIV PRESS

Julkaisuvuosi2023

JournalCanadian Mathematical Bulletin

Tietokannassa oleva lehden nimiCANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES

Lehden akronyymiCAN MATH BULL

Sivujen määrä17

ISSN0008-4395

eISSN1496-4287

DOIhttp://dx.doi.org/10.4153/S000843952300022X

Verkko-osoitehttps://doi.org/10.4153/S000843952300022X


Tiivistelmä
We study the double character sum (m <= X, m odd n)Sigma (n <= Y n odd)Sigma (m/n ) and its smoothly weighted counter-part. An asymptotic formula with power saving error term was obtained by Conrey, Farmer, and Soundararajan by applying the Poisson summation formula. The result is interesting because the main term involves a non-smooth function. In this paper, we apply the inverse Mellin transform twice and study the resulting double integral that involves a double Dirichlet series. This method has two advantages-it leads to a better error term, and the surprising main term naturally arises from three residues of the double Dirichlet series.


Last updated on 2023-07-06 at 12:14