Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression




Anttila JV, Shubin M, Cairns J, Borse F, Guo QL, Mononen T, Vazquez-Garcia I, Pulkkinen O, Mustonen V

PublisherPUBLIC LIBRARY SCIENCE

2019

PLoS Computational Biology

PLOS COMPUTATIONAL BIOLOGY

PLOS COMPUT BIOL

e1007493

15

18

1553-734X

DOIhttps://doi.org/10.1371/journal.pcbi.1007493



A tumour grows when the total division (birth) rate of its cells exceeds their total mortality (death) rate. The capability for uncontrolled growth within the host tissue is acquired via the accumulation of driver mutations which enable the tumour to progress through various hallmarks of cancer. We present a mathematical model of the penultimate stage in such a progression. We assume the tumour has reached the limit of its present growth potential due to cell competition that either results in total birth rate reduction or death rate increase. The tumour can then progress to the final stage by either seeding a metastasis or acquiring a driver mutation. We influence the ensuing evolutionary dynamics by cytotoxic (increasing death rate) or cytostatic (decreasing birth rate) therapy while keeping the effect of the therapy on net growth reduction constant. Comparing the treatments head to head we derive conditions for choosing optimal therapy. We quantify how the choice and the related gain of optimal therapy depends on driver mutation, metastasis, intrinsic cell birth and death rates, and the details of cell competition. We show that detailed understanding of the cell population dynamics could be exploited in choosing the right mode of treatment with substantial therapy gains.Author summary Cells and organisms evolve to better survive in their environments and to adapt to new challenges. Such dynamics manifest in a particularly problematic way with the evolution of drug resistance, which is increasingly recognized as a key challenge for global health. Thus, developing therapy paradigms that factor in evolutionary dynamics is an important goal. Using a minimal mathematical model of a cancer cell population we contrast cytotoxic (increasing death rate) and cytostatic (decreasing birth rate) treatments while keeping the effect of the therapy on the net growth reduction constant. We then quantify how the choice and the related gain of optimal therapy depends on driver mutation, metastasis, intrinsic cell birth and death rates and the details of cell competition. Most importantly, we identify specific cell population dynamics under which a certain treatment could be significantly better than the alternative.



Last updated on 2024-26-11 at 16:26