A1 Refereed original research article in a scientific journal
Europe-Wide Dampening of Population Cycles in Keystone Herbivores
Authors: Cornulier T, Yoccoz NG, Bretagnolle V, Brommer JE, Butet A, Ecke F, Elston DA, Framstad E, Henttonen H, Hornfeldt B, Huitu O, Imholt C, Ims RA, Jacob J, Jedrzejewska B, Millon A, Petty SJ, Pietiainen H, Tkadlec E, Zub K, Lambin X
Publisher: AMER ASSOC ADVANCEMENT SCIENCE
Publication year: 2013
Journal: Science
Journal name in source: SCIENCE
Journal acronym: SCIENCE
Number in series: 6128
Volume: 340
Issue: 6128
First page : 63
Last page: 66
Number of pages: 4
ISSN: 0036-8075
DOI: https://doi.org/10.1126/science.1228992
Abstract
Suggestions of collapse in small herbivore cycles since the 1980s have raised concerns about the loss of essential ecosystem functions. Whether such phenomena are general and result from extrinsic environmental changes or from intrinsic process stochasticity is currently unknown. Using a large compilation of time series of vole abundances, we demonstrate consistent cycle amplitude dampening associated with a reduction in winter population growth, although regulatory processes responsible for cyclicity have not been lost. The underlying syndrome of change throughout Europe and grass-eating vole species suggests a common climatic driver. Increasing intervals of low-amplitude small herbivore population fluctuations are expected in the future, and these may have cascading impacts on trophic webs across ecosystems.
Suggestions of collapse in small herbivore cycles since the 1980s have raised concerns about the loss of essential ecosystem functions. Whether such phenomena are general and result from extrinsic environmental changes or from intrinsic process stochasticity is currently unknown. Using a large compilation of time series of vole abundances, we demonstrate consistent cycle amplitude dampening associated with a reduction in winter population growth, although regulatory processes responsible for cyclicity have not been lost. The underlying syndrome of change throughout Europe and grass-eating vole species suggests a common climatic driver. Increasing intervals of low-amplitude small herbivore population fluctuations are expected in the future, and these may have cascading impacts on trophic webs across ecosystems.