On the size of identifying codes in binary hypercubes
: Janson S, Laihonen T
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
: 2009
: Journal of Combinatorial Theory, Series A
: JOURNAL OF COMBINATORIAL THEORY SERIES A
: J COMB THEORY A
: 116
: 5
: 1087
: 1096
: 10
: 0097-3165
DOI: https://doi.org/10.1016/j.jcta.2009.02.004
where r = left perpendicular rho nright perpendicular, rho epsilon [0, 1) and h(x) is the binary entropy function. In this paper, we prove that this result holds for any fixed l >= 1 when rho epsilon [0, 1/2). We also show that M(r)((<= l))(n) = O(n(3/2)) for every fixed l and r slightly less than n/2, and give an explicit construction of small (r, <= 2)-identifying codes for r = left perpendicularn/2right perpendicular - 1. (C) 2009 Elsevier Inc. All rights reserved.