Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products




Jansson A, Koskiniemi H, Mantsala P, Niemi J, Schneider G

PublisherAMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC

2004

Journal of Biological Chemistry

JOURNAL OF BIOLOGICAL CHEMISTRY

J BIOL CHEM

279

39

41149

41156

8

0021-9258

DOIhttps://doi.org/10.1074/jbc.M407081200



One of the final steps in the biosynthesis of the widely used anti-tumor drug daunorubicin in Streptomyces peucetius is the methylation of the 4-hydroxyl group of the tetracyclic ring system. This reaction is catalyzed by the S-adenosyl-L-methionine-dependent carminomycin 4-O-methyltransferase DnrK. The crystal structure of the ternary complex of this enzyme with the bound products S-adenosyl-L-homocysteine and 4-methoxy-epsilon-rhodomycin T has been determined to a 2.35-Angstrom resolution. DnrK is a homodimer, and the subunit displays the typical fold of small molecule O-methyltransferases. The structure provides insights into the recognition of the anthracycline substrate and also suggests conformational changes as part of the catalytic cycle of the enzyme. The position and orientation of the bound ligands are consistent with an S(N)2 mechanism of methyl transfer. Mutagenesis experiments on a putative catalytic base confirm that DnrK most likely acts as an entropic enzyme in that rate enhancement is mainly due to orientational and proximity effects. This contrasts the mechanism of DnrK with that of other O-methyltransferases where acid/base catalysis has been demonstrated to be an essential contribution to rate enhancement.



Last updated on 2025-14-10 at 09:46