Vertaisarvioitu alkuperäisartikkeli tai data-artikkeli tieteellisessä aikakauslehdessä (A1)

Level sets of potential functions bisecting unbounded quadrilaterals

Julkaisun tekijät: Nasser Mohamed M.S, Nasyrov Semen, Vuorinen Matti


Julkaisuvuosi: 2022

Journal: Analysis and Mathematical Physics

Tietokannassa oleva lehden nimi: ANALYSIS AND MATHEMATICAL PHYSICS

Lehden akronyymi: ANAL MATH PHYS

Volyymi: 12

Sivujen määrä: 15

ISSN: 1664-2368




We study the mixed Dirichlet-Neumann problem for the Laplace equation in the complement of a bounded convex polygonal quadrilateral in the extended complex plane. The Dirichlet /Neumann conditions at opposite pairs of sides are {0, 1} and {0, 0}, resp. The solution to this problem is a harmonic function in the unbounded complement of the polygon known as the potential function of the quadrilateral. We compute the values of the potential function u including its value at infinity. The main result of this paper is Theorem 4.3 which yields a formula for u(oo) expressed in terms of the angles of the polygonal given quadrilateral and the well-known special functions. We use two independent numerical methods to illustrate our result. The first method is a Mathematica program and the second one is based on using the MATLAB toolbox PlgCirMap. The case of a quadrilateral, which is the exterior of the unit disc with four fixed points on its boundary, is considered as well.

Last updated on 2022-28-11 at 08:47