A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Representation theorem for convex nonparametric least squares




TekijätKuosmanen T

KustantajaBLACKWELL PUBLISHING

Julkaisuvuosi2008

JournalEconometrics Journal

Tietokannassa oleva lehden nimiECONOMETRICS JOURNAL

Lehden akronyymiECONOMET J

Vuosikerta11

Aloitussivu308

Lopetussivu325

Sivujen määrä18

ISSN1368-4221

DOIhttps://doi.org/10.1111/j.1368-423X.2008.00239.x


Tiivistelmä
We examine a nonparametric least-squares regression model that endogenously selects the functional form of the regression function from the family of continuous, monotonic increasing and globally concave functions that can be nondifferentiable. We show that this family of functions can be characterized without a loss of generality by a subset of continuous, piece-wise linear functions whose intercept and slope coefficients are constrained to satisfy the required monotonicity and concavity conditions. This representation theorem is useful at least in three respects. First, it enables us to derive an explicit representation for the regression function, which can be used for assessing marginal properties and for the purposes of forecasting and ex post economic modelling. Second, it enables us to transform the infinite dimensional regression problem into a tractable quadratic programming (QP) form, which can be solved by standard QP algorithms and solver software. Importantly, the QP formulation applies to the general multiple regression setting. Third, an operational computational procedure enables us to apply bootstrap techniques to draw statistical inference.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:26