A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Shape-Constrained Kernel-Weighted Least Squares: Estimating Production Functions for Chilean Manufacturing Industries




TekijätYagi D, Chen YN, Johnson AL, Kuosmanen T

KustantajaAMER STATISTICAL ASSOC

Julkaisuvuosi2020

JournalJournal of Business and Economic Statistics

Tietokannassa oleva lehden nimiJOURNAL OF BUSINESS & ECONOMIC STATISTICS

Lehden akronyymiJ BUS ECON STAT

Vuosikerta38

Aloitussivu43

Lopetussivu54

Sivujen määrä12

ISSN0735-0015

DOIhttps://doi.org/10.1080/07350015.2018.1431128


Tiivistelmä
In this article, we examine a novel way of imposing shape constraints on a local polynomial kernel estimator. The proposed approach is referred to as shape constrained kernel-weighted least squares (SCKLS). We prove uniform consistency of the SCKLS estimator with monotonicity and convexity/concavity constraints and establish its convergence rate. In addition, we propose a test to validate whether shape constraints are correctly specified. The competitiveness of SCKLS is shown in a comprehensive simulation study. Finally, we analyze Chilean manufacturing data using the SCKLS estimator and quantify production in the plastics and wood industries. The results show that exporting firms have significantly higher productivity.



Last updated on 2024-26-11 at 22:23