Vertaisarvioitu alkuperäisartikkeli tai data-artikkeli tieteellisessä aikakauslehdessä (A1)

Stability kernel in finite games with perturbed payoffs




Julkaisun tekijätEmelichev Vladimir, Nikulin Yury

KustantajaSystems Research Institute

PaikkaWarsaw

Julkaisuvuosi2022

JournalControl and Cybernetics

Lehden akronyymiC&C

Volyymi51

Julkaisunumero1

Aloitussivu6

Lopetussivun numero20

DOIhttp://dx.doi.org/10.2478/candc-2022-0001

Verkko-osoitehttps://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-656b784b-639f-4871-a2bb-5fc0c63c7ccc

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175714834


Tiivistelmä

The parametric concept of equilibrium in a finite cooperative game of several players in a normal form is introduced. This concept is defined by the partitioning of a set of players into coalitions. Two extreme cases of such partitioning correspond to Pareto optimal and Nash equilibrium outcomes, respectively. The game is characterized by its matrix, in which each element is a subject for independent perturbations., ie a set of perturbing matrices is formed by a set of additive matrices, with two arbitrary Hölder norms specified independently in the outcome and criterion spaces. We undertake post-optimal analysis for the so-called stability kernel. The analytical expression for supreme levels of such perturbations is found. Numerical examples illustrate some of the pertinent cases.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2022-09-12 at 15:01