Vertaisarvioitu alkuperäisartikkeli tai data-artikkeli tieteellisessä aikakauslehdessä (A1)

The Goldbach Conjecture With Summands In Arithmetic Progressions




Julkaisun tekijät: Salmensuu Juho

Kustantaja: OXFORD UNIV PRESS

Julkaisuvuosi: 2022

Journal: Quarterly Journal of Mathematics

Tietokannassa oleva lehden nimi: QUARTERLY JOURNAL OF MATHEMATICS

Lehden akronyymi: Q J MATH

Sivujen määrä: 27

ISSN: 0033-5606

eISSN: 1464-3847

DOI: http://dx.doi.org/10.1093/qmath/haac008

Verkko-osoite: https://doi.org/10.1093/qmath/haac008

Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/175192603


Tiivistelmä
We prove that, for almost all r <= N-1/2/log(O(1)) N, for any given b(1) (mod r) with (b(1), r) = 1, and for almost all b(2) (mod r) with (b(2), r) = 1, we have that almost all natural numbers 2(n) <= N with 2n b(1) + b(2) (mod r) can be written as the sum of two prime numbers 2n = p(1) + p(2), where p(1) b(1) (mod r) and p(2) b(2) (mod r) . This improves the previous result which required r <= N-1/3/log(O(1)) N instead of r <= N-1/2/log(O(1))N. We also improve some other results concerning variations of the problem.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2022-09-12 at 11:03