A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Bayesian inference of atomistic structure in functional materials
Tekijät: Todorovic M, Gutmann MU, Corander J, Rinke P
Kustantaja: NATURE PUBLISHING GROUP
Julkaisuvuosi: 2019
Journal: npj Computational Materials
Tietokannassa oleva lehden nimi: NPJ COMPUTATIONAL MATERIALS
Lehden akronyymi: NPJ COMPUT MATER
Artikkelin numero: 35
Vuosikerta: 5
Sivujen määrä: 7
DOI: https://doi.org/10.1038/s41524-019-0175-2
Tiivistelmä
Tailoring the functional properties of advanced organic/inorganic heterogeneous devices to their intended technological applications requires knowledge and control of the microscopic structure inside the device. Atomistic quantum mechanical simulation methods deliver accurate energies and properties for individual configurations, however, finding the most favourable configurations remains computationally prohibitive. We propose a 'building block'-based Bayesian Optimisation Structure Search (BOSS) approach for addressing extended organic/inorganic interface problems and demonstrate its feasibility in a molecular surface adsorption study. In BOSS, a Bayesian model identifies material energy landscapes in an accelerated fashion from atomistic configurations sampled during active learning. This allowed us to identify several most favourable molecular adsorption configurations for C-60 on the (101) surface of TiO2 anatase and clarify the key molecule-surface interactions governing structural assembly. Inferred structures were in good agreement with detailed experimental images of this surface adsorbate, demonstrating good predictive power of BOSS and opening the route towards large-scale surface adsorption studies of molecular aggregates and films.
Tailoring the functional properties of advanced organic/inorganic heterogeneous devices to their intended technological applications requires knowledge and control of the microscopic structure inside the device. Atomistic quantum mechanical simulation methods deliver accurate energies and properties for individual configurations, however, finding the most favourable configurations remains computationally prohibitive. We propose a 'building block'-based Bayesian Optimisation Structure Search (BOSS) approach for addressing extended organic/inorganic interface problems and demonstrate its feasibility in a molecular surface adsorption study. In BOSS, a Bayesian model identifies material energy landscapes in an accelerated fashion from atomistic configurations sampled during active learning. This allowed us to identify several most favourable molecular adsorption configurations for C-60 on the (101) surface of TiO2 anatase and clarify the key molecule-surface interactions governing structural assembly. Inferred structures were in good agreement with detailed experimental images of this surface adsorbate, demonstrating good predictive power of BOSS and opening the route towards large-scale surface adsorption studies of molecular aggregates and films.