Stable pure state quantum tomography from five orthonormal bases




Carmeli C, Heinosaari T, Kech M, Schultz J, Toigo A

PublisherEPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY

2016

EPL

EPL

EPL-EUROPHYS LETT

ARTN 30001

115

3

6

0295-5075

DOIhttps://doi.org/10.1209/0295-5075/115/30001



For any finite-dimensional Hilbert space, we construct explicitly five orthonormal bases such that the corresponding measurements allow for efficient tomography of an arbitrary pure quantum state. This means that such measurements can be used to distinguish an arbitrary pure state from any other state, pure or mixed, and the pure state can be reconstructed from the outcome distribution in a feasible way. The set of measurements we construct is independent of the unknown state, and therefore our results provide a fixed scheme for pure state tomography, as opposed to the adaptive (state-dependent) scheme proposed by Goyeneche et al. (Phys. Rev. Lett., 115 (2015) 090401). We show that our scheme is robust with respect to noise, in the sense that any measurement scheme which approximates these measurements well enough is equally suitable for pure state tomography. Finally, we present two convex programs which can be used to reconstruct the unknown pure state from the measurement outcome distributions. Copyright (C) EPLA, 2016



Last updated on 2024-26-11 at 10:59