A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
THE VISUAL ANGLE METRIC AND QUASIREGULAR MAPS
Tekijät: Wang GD, Vuorinen M
Kustantaja: AMER MATHEMATICAL SOC
Julkaisuvuosi: 2016
Journal: Proceedings of the American Mathematical Society
Tietokannassa oleva lehden nimi: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Lehden akronyymi: P AM MATH SOC
Vuosikerta: 144
Numero: 11
Aloitussivu: 4899
Lopetussivu: 4912
Sivujen määrä: 14
ISSN: 0002-9939
DOI: https://doi.org/10.1090/proc/13188
Tiivistelmä
The distortion of distances between points under maps is studied. We first prove a Schwarz-type lemma for quasiregular maps of the unit disk involving the visual angle metric. Then we investigate conversely the quasi-conformality of a bilipschitz map with respect to the visual angle metric on convex domains. For the unit ball or half space, we prove that a bilipschitz map with respect to the visual angle metric is also bilipschitz with respect to the hyperbolic metric. We also obtain various inequalities relating the visual angle metric to other metrics such as the distance ratio metric and the quasihyperbolic metric.
The distortion of distances between points under maps is studied. We first prove a Schwarz-type lemma for quasiregular maps of the unit disk involving the visual angle metric. Then we investigate conversely the quasi-conformality of a bilipschitz map with respect to the visual angle metric on convex domains. For the unit ball or half space, we prove that a bilipschitz map with respect to the visual angle metric is also bilipschitz with respect to the hyperbolic metric. We also obtain various inequalities relating the visual angle metric to other metrics such as the distance ratio metric and the quasihyperbolic metric.