Thermometry of ultracold atoms via nonequilibrium work distributions
: Johnson TH, Cosco F, Mitchison MT, Jaksch D, Clark SR
Publisher: AMER PHYSICAL SOC
: 2016
: Physical Review A
: PHYSICAL REVIEW A
: PHYS REV A
: ARTN 053619
: 93
: 5
: 6
: 2469-9926
: 2469-9934
DOI: https://doi.org/10.1103/PhysRevA.93.053619
Estimating the temperature of a cold quantum system is difficult. Usually one measures a well-understood thermal state and uses that prior knowledge to infer its temperature. In contrast, we introduce a method of thermometry that assumes minimal knowledge of the state of a system and is potentially nondestructive. Our method uses a universal temperature dependence of the quench dynamics of an initially thermal system coupled to a qubit probe that follows from the Tasaki-Crooks theorem for nonequilibrium work distributions. We provide examples for a cold-atom system, in which our thermometry protocol may retain accuracy and precision at subnano-Kelvin temperatures.