A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Solid-phase synthesis of oligonucleotide glycoconjugates bearing three different glycosyl groups: Orthogonally protected bis(hydroxymethyl)-N,N '-bis(3-hydroxypropyl)malondiamide phosphoramidite as key building block
Tekijät: Katajisto J, Heinonen P, Lonnberg H
Kustantaja: AMER CHEMICAL SOC
Julkaisuvuosi: 2004
Lehti:: Journal of Organic Chemistry
Tietokannassa oleva lehden nimi: JOURNAL OF ORGANIC CHEMISTRY
Lehden akronyymi: J ORG CHEM
Vuosikerta: 69
Numero: 22
Aloitussivu: 7609
Lopetussivu: 7615
Sivujen määrä: 7
ISSN: 0022-3263
DOI: https://doi.org/10.1021/jo0489840o
Tiivistelmä
Diethyl O,O'-(methoxymethylene)bis(hydroxymethyl)malonate (3) was observed to undergo a stepwise aminolysis when treated with 3-aminopropanol. This allowed convenient preparation of bis(hydroxymethyl)-N,N'-bis(3-hydroxypropyl)malondiamide bearing orthogonal levulinyl (Lev) and tert-butyldiphenylsilyl (TBDPS) protections at the two N-hydroxypropyl groups (8). One of the hydroxylmethyl functions was then protected with a 4,4'-dimethoxytrityl (DMTr) group, and the other one was phosphitylated to obtain a methyl N,N-diisopropylphosphoramidite (1). This building block was used for the synthesis of oligonucleotide glycoconjugates (25 and 26) carrying three different sugar units. After conventional phosphoramidite chain assembly of the sequence containing 1, the T-terminal DMTr group was removed and an appropriate glycosyl 6-O-phosphoramidite was coupled. The remaining protections of the branching unit were removed in the order of Lev and TBDPS, and the exposed hydroxyl functions were reacted one after another with the desired glycosyl 6-O-phosphoramidites. Global deprotection and cleavage of the conjugate from the support were achieved by conventional ammonolysis.
Diethyl O,O'-(methoxymethylene)bis(hydroxymethyl)malonate (3) was observed to undergo a stepwise aminolysis when treated with 3-aminopropanol. This allowed convenient preparation of bis(hydroxymethyl)-N,N'-bis(3-hydroxypropyl)malondiamide bearing orthogonal levulinyl (Lev) and tert-butyldiphenylsilyl (TBDPS) protections at the two N-hydroxypropyl groups (8). One of the hydroxylmethyl functions was then protected with a 4,4'-dimethoxytrityl (DMTr) group, and the other one was phosphitylated to obtain a methyl N,N-diisopropylphosphoramidite (1). This building block was used for the synthesis of oligonucleotide glycoconjugates (25 and 26) carrying three different sugar units. After conventional phosphoramidite chain assembly of the sequence containing 1, the T-terminal DMTr group was removed and an appropriate glycosyl 6-O-phosphoramidite was coupled. The remaining protections of the branching unit were removed in the order of Lev and TBDPS, and the exposed hydroxyl functions were reacted one after another with the desired glycosyl 6-O-phosphoramidites. Global deprotection and cleavage of the conjugate from the support were achieved by conventional ammonolysis.