A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Diagonal discrete gradient bundle method for derivative free nonsmooth optimization




TekijätKarmitsa N

KustantajaTAYLOR & FRANCIS LTD

Julkaisuvuosi2016

JournalOptimization

Tietokannassa oleva lehden nimiOPTIMIZATION

Lehden akronyymiOPTIMIZATION

Vuosikerta65

Numero8

Aloitussivu1599

Lopetussivu1614

Sivujen määrä16

ISSN0233-1934

eISSN1029-4945

DOIhttps://doi.org/10.1080/02331934.2016.1171865


Tiivistelmä
Typically, practical nonsmooth optimization problems involve functions with hundreds of variables. Moreover, there are many practical problems where the computation of even one subgradient is either a difficult or an impossible task. In such cases, the usual subgradient-based optimization methods cannot be used. However, the derivative free methods are applicable since they do not use explicit computation of subgradients. In this paper, we propose an efficient diagonal discrete gradient bundle method for derivative-free, possibly nonconvex, nonsmooth minimization. The convergence of the proposed method is proved for semismooth functions, which are not necessarily differentiable or convex. The method is implemented using Fortran 95, and the numerical experiments confirm the usability and efficiency of the method especially in case of large-scale problems.



Last updated on 2024-26-11 at 21:36