A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-beta-Slug signaling
Tekijät: Cheng F, Shen Y, Mohanasundaram P, Lindstrom M, Ivaska J, Ny T, Eriksson JE
Kustantaja: NATL ACAD SCIENCES
Julkaisuvuosi: 2016
Journal: Proceedings of the National Academy of Sciences of the United States of America
Tietokannassa oleva lehden nimi: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Lehden akronyymi: P NATL ACAD SCI USA
Vuosikerta: 113
Numero: 30
Aloitussivu: E4320
Lopetussivu: E4327
Sivujen määrä: 8
ISSN: 0027-8424
DOI: https://doi.org/10.1073/pnas.1519197113
Tiivistelmä
Vimentin has been shown to be involved in wound healing, but its functional contribution to this process is poorly understood. Here we describe a previously unrecognized function of vimentin in coordinating fibroblast proliferation and keratinocyte differentiation during wound healing. Loss of vimentin led to a severe deficiency in fibroblast growth, which in turn inhibited the activation of two major initiators of epithelial-mesenchymal transition (EMT), TGF-beta 1 signaling and the Zinc finger transcriptional repressor protein Slug, in vimentin-deficient (VIM-/-) wounds. Correspondingly, VIM-/- wounds exhibited loss of EMT-like keratinocyte activation, limited keratinization, and slow reepithelialization. Furthermore, the fibroblast deficiency abolished collagen accumulation in the VIM-/- wounds. Vimentin reconstitution in VIM-/- fibroblasts restored both their proliferation and TGF-beta 1 production. Similarly, restoring paracrine TGF-beta-Slug-EMT signaling reactivated the transdifferentiation of keratinocytes, reviving their migratory properties, a critical feature for efficient healing. Our results demonstrate that vimentin orchestrates the healing by controlling fibroblast proliferation, TGF-beta 1-Slug signaling, collagen accumulation, and EMT processing, all of which in turn govern the required keratinocyte activation.
Vimentin has been shown to be involved in wound healing, but its functional contribution to this process is poorly understood. Here we describe a previously unrecognized function of vimentin in coordinating fibroblast proliferation and keratinocyte differentiation during wound healing. Loss of vimentin led to a severe deficiency in fibroblast growth, which in turn inhibited the activation of two major initiators of epithelial-mesenchymal transition (EMT), TGF-beta 1 signaling and the Zinc finger transcriptional repressor protein Slug, in vimentin-deficient (VIM-/-) wounds. Correspondingly, VIM-/- wounds exhibited loss of EMT-like keratinocyte activation, limited keratinization, and slow reepithelialization. Furthermore, the fibroblast deficiency abolished collagen accumulation in the VIM-/- wounds. Vimentin reconstitution in VIM-/- fibroblasts restored both their proliferation and TGF-beta 1 production. Similarly, restoring paracrine TGF-beta-Slug-EMT signaling reactivated the transdifferentiation of keratinocytes, reviving their migratory properties, a critical feature for efficient healing. Our results demonstrate that vimentin orchestrates the healing by controlling fibroblast proliferation, TGF-beta 1-Slug signaling, collagen accumulation, and EMT processing, all of which in turn govern the required keratinocyte activation.