A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science




Lavraud B, Liu Y, Segura K, He J, Qin G, Temmer M, Vial JC, Xiong M, Davies JA, Rouillard AP, Pinto R, Auchere F, Harrison RA, Eyles C, Gan W, Lamy P, Xia L, Eastwood JP, Kong L, Wang J, Wimmer-Schweingruber RF, Zhang S, Zong Q, Soucek J, An J, Prech L, Zhang A, Rochus P, Bothmer V, Janvier M, Maksimovic M, Escoubet CP, Kilpua EKJ, Tappin J, Vainio R, Poedts S, Dunlop MW, Savani N, Gopalswamy N, Bale SD, Li G, Howard T, DeForest C, Webb D, Lugaz N, Fuselier SA, Dalmasse K, Tallineau J, Vranken D, Fernandez JG

PublisherPERGAMON-ELSEVIER SCIENCE LTD

2016

Journal of Atmospheric and Solar-Terrestrial Physics

JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS

J ATMOS SOL-TERR PHY

146

171

185

15

1364-6826

1879-1824

DOIhttps://doi.org/10.1016/j.jastp.2016.06.004



We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions. (C) 2016 Elsevier Ltd. All rights reserved.



Last updated on 2024-26-11 at 11:51