A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE




TekijätJackson DR, Yu X, Wang GJ, Patel AB, Calveras J, Barajas JF, Sasaki E, Metsa-Ketela M, Liu HW, Rohr J, Tsai SC

KustantajaAMER CHEMICAL SOC

Julkaisuvuosi2016

JournalACS Chemical Biology

Tietokannassa oleva lehden nimiACS CHEMICAL BIOLOGY

Lehden akronyymiACS CHEM BIOL

Vuosikerta11

Numero4

Aloitussivu1137

Lopetussivu1147

Sivujen määrä11

ISSN1554-8929

eISSN1554-8937

DOIhttps://doi.org/10.1021/acschembio.5b00913


Tiivistelmä
Cores of aromatic polyketides are essential for their biological activities. Most type II polyketide synthases (PKSs) biosynthesize these core structures involving the minimal PKS, a PKS-associated ketoreductase (KR) and aromatases/cyclases (ARO/CYCs). Oxygenases (OXYs) are rarely involved. BE-7585A is an anticancer polyketide with an angucyclic core. C-13 isotope labeling experiments suggest that its angucyclic core may arise from an oxidative rearrangement of a linear anthracyclinone. Here, we present the crystal structure and functional analysis of BexE, the oxygenase proposed to catalyze this key oxidative rearrangement step that generates the angucyclinone framework. Biochemical assays using various linear anthracyclinone model compounds combined with docking simulations narrowed down the substrate of BexE to be an immediate precursor of aklaviketone, possibly 12-deoxy-aklaviketone. The structural analysis, docking simulations, and biochemical assays provide insights into the role of BexE in BE-7585A biosynthesis and lay the groundwork for engineering such framework-modifying enzymes in type II PKSs.



Last updated on 2024-26-11 at 17:55