A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Novel feature descriptor based on microscopy image statistics




TekijätBayramoglu N, Kannala J, Akerfelt M, Kaakinen M, Eklund L, Nees M, Heikkila J

Konferenssin vakiintunut nimiIEEE International Conference on Image Processing (ICIP)

KustannuspaikkaQuebec City, CANADA

Julkaisuvuosi2015

JournalIEEE International Conference on Image Processing

Kokoomateoksen nimi2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)

Tietokannassa oleva lehden nimi2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)

Lehden akronyymiIEEE IMAGE PROC

Aloitussivu2695

Lopetussivu2699

Sivujen määrä5

ISBN978-1-4799-8339-1

ISSN1522-4880

DOIhttps://doi.org/10.1109/ICIP.2015.7351292


Tiivistelmä
In this paper, we propose a novel feature description algorithm based on image statistics. The pipeline first performs independent component analysis on training image patches to obtain basis vectors (filters) for a lower dimensional representation. Then for a given image, a set of filter responses at each pixel is computed. Finally, a histogram representation, which considers the signs and magnitudes of the responses as well as the number of filters, is applied on local image patches. We propose to apply this idea to a microscopy image pixel identification system based on a learning framework. Experimental results show that the proposed algorithm performs better than the state-of-the-art descriptors in biomedical images of different microscopy modalities.



Last updated on 2024-26-11 at 17:47