A1 Refereed original research article in a scientific journal

Optimization of Pr0.9Ca0.1MnO3 thin films and observation of coexisting spin-glass and ferromagnetic phases at low temperature




AuthorsSvedberg M, Majumdar S, Huhtinen H, Paturi P, Granroth S

PublisherIOP PUBLISHING LTD

Publication year2011

JournalJournal of Physics: Condensed Matter

Journal name in sourceJOURNAL OF PHYSICS-CONDENSED MATTER

Journal acronymJ PHYS-CONDENS MAT

Article number386005

Number in series38

Volume23

Issue38

First page 386005-1

Last page11

Number of pages11

ISSN0953-8984

DOIhttps://doi.org/10.1088/0953-8984/23/38/386005


Abstract
Optimization of thin films of small bandwidth manganite, Pr1-xCaxMnO3 (for x = 0.1), and their magnetic properties are investigated. Using different pulsed laser deposition (PLD) conditions, several films were deposited from the stoichiometric target material on SrTiO3 (001) substrate and their thorough structural and magnetic characterizations were carried out using x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy (XPS), SQUID magnetometry and ac susceptibility measurements. A systematic investigation shows that irrespective of the growth temperature (between 550 and 750 degrees C), all the as-deposited films have twin boundaries and magnetic double phases. Post-annealing in partial or full oxygen pressure removes the extra phase and the twin boundaries. Zero-field-cooled magnetization data show an antiferromagnetic to paramagnetic transition at around 100 K whereas the field-cooled magnetization data exhibit a paramagnetic to ferromagnetic transition close to 120 K. However, depending on the oxygen treatments, the saturation magnetization and Curie temperature of the films change significantly. Redistribution of oxygen vacancies due to annealing treatments leading to a change in ratio of Mn3+ and Mn4+ in the films is observed from XPS measurements. Low temperature (below 100 K) dc magnetization of these films shows metamagnetic transition, high coercivity and irreversibility magnetizations, indicating the presence of a spin-glass phase at low temperature. The frequency dependent shift in spin-glass freezing temperature from ac susceptibility measurement confirms the coexistence of spin-glass and ferromagnetic phases in these samples at low temperature.



Last updated on 2024-26-11 at 21:26