A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Electron and hole transmission through superconductor - Normal metal interfaces
Tekijät: Gloos K, Tuuli E
Toimittaja: The Korean Physical Society
Kustantaja: KOREAN PHYSICAL SOC
Julkaisuvuosi: 2013
Journal: Journal- Korean Physical Society
Kokoomateoksen nimi: Journal of the Korean Physical Society
Tietokannassa oleva lehden nimi: JOURNAL OF THE KOREAN PHYSICAL SOCIETY
Lehden akronyymi: J KOREAN PHYS SOC
Sarjan nimi: 19th International Conference on Magnetism
Numero sarjassa: 10
Vuosikerta: 62
Numero: 10
Aloitussivu: 1575
Lopetussivu: 1579
Sivujen määrä: 5
ISSN: 0374-4884
DOI: https://doi.org/10.3938/jkps.62.1575
Tiivistelmä
We have investigated the transmission of electrons and holes through interfaces between superconducting aluminum (T (c) = 1.2K) and various normal non-magnetic metals (copper, gold, palladium, platinum, and silver) using Andreev-reflection spectroscopy at T = 0.1K. We analysed the point contacts with the modified BTK theory that includes Dynes' lifetime as a fitting parameter I" in addition to superconducting energy gap 2 Delta and normal reflection described by Z. For contact areas from 1 nm(2) to 10000nm(2) the BTK Z parameter was 0.5, corresponding to transmission coefficients of about 80%, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible dielectric tunneling barrier. Fermi surface mismatch does not account for the observed transmission coefficient.
We have investigated the transmission of electrons and holes through interfaces between superconducting aluminum (T (c) = 1.2K) and various normal non-magnetic metals (copper, gold, palladium, platinum, and silver) using Andreev-reflection spectroscopy at T = 0.1K. We analysed the point contacts with the modified BTK theory that includes Dynes' lifetime as a fitting parameter I" in addition to superconducting energy gap 2 Delta and normal reflection described by Z. For contact areas from 1 nm(2) to 10000nm(2) the BTK Z parameter was 0.5, corresponding to transmission coefficients of about 80%, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible dielectric tunneling barrier. Fermi surface mismatch does not account for the observed transmission coefficient.