Linear grammars with one-sided contexts and their automaton representation
: Alexander Okhotin, Mikhail Barash
: International symposium on latin american theoretical informatics
: 2014
: Lecture Notes in Computer Science
: LNCS
: 8392
: 8392
: 190
: 201
: 12
: 0302-9743
DOI: https://doi.org/10.1007/978-3-642-54423-1_17
The paper considers a family of formal grammars that extends linear context-free grammars with an operator for referring to the left context of a substring being defined, as well as with a conjunction operation (as in linear conjunctive grammars). These grammars are proved to be computationally equivalent to an extension of one-way real-time cellular automata with an extra data channel. The main result is the undecidability of the emptiness problem for grammars restricted to a one-symbol alphabet, which is proved by simulating a Turing machine by a cellular automaton with feedback. The same construction proves the $\Sigma^0_2$-completeness of the finiteness problem for these grammars and automata.