A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Undecidable Properties of Self-affine Sets and Multi-tape Automata




TekijätTimo Jolivet, Jarkko Kari

ToimittajaErzsébet Csuhaj-Varjú, Martin Dietzfelbinger, Zoltán Ésik

Konferenssin vakiintunut nimiInternational symposium on mathematical foundations of computer science 2014

Julkaisuvuosi2014

JournalLecture Notes in Computer Science

Kokoomateoksen nimiMathematical Foundations of Computer Science 2014: 39th International Symposium, MFCS 2014: Budapest, Hungary, August 25-29, 2014: Proceedings, Part I

Sarjan nimiLecture Notes in Computer Science

Vuosikerta8634

Aloitussivu352

Lopetussivu364

Sivujen määrä13

ISBN978-3-662-44521-1

eISBN978-3-662-44522-8

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-662-44522-8_30


Tiivistelmä

We study the decidability of the topological properties of some objects coming from fractal geometry. We prove that having empty interior is undecidable for the sets defined by two-dimensional graph-directed iterated function systems. These results are obtained by studying a particular class of self-affine sets associated with multi-tape automata. We first establish the undecidability of some language-theoretical properties of such automata, which then translate into undecidability results about their associated self-affine sets.



Last updated on 2024-26-11 at 18:52