A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
The minimum density of an identifying code in the king lattice
Tekijät: Charon I, Honkala I, Hudry O, Lobstein A
Kustantaja: ELSEVIER SCIENCE BV
Julkaisuvuosi: 2004
Journal: Discrete Mathematics
Tietokannassa oleva lehden nimi: DISCRETE MATHEMATICS
Lehden akronyymi: DISCRETE MATH
Vuosikerta: 276
Numero: 1-3
Aloitussivu: 95
Lopetussivu: 109
Sivujen määrä: 15
ISSN: 0012-365X
DOI: https://doi.org/10.1016/S0012-365X(03)00306-6
Tiivistelmä
Consider a connected undirected graph G =(V, E) and a subset of vertices C. If for all vertices v is an element of V, the sets B-r(v) boolean AND C are all nonempty and different, where B-r(v) denotes the set of all points within distance r from v, then we call C an r-identifying code. For all r, we give the exact value of the best possible density of an r-identifying code in the king lattice, i.e., the infinite two-dimensional square lattice with two diagonals. (C) 2003 Published by Elsevier B.V.
Consider a connected undirected graph G =(V, E) and a subset of vertices C. If for all vertices v is an element of V, the sets B-r(v) boolean AND C are all nonempty and different, where B-r(v) denotes the set of all points within distance r from v, then we call C an r-identifying code. For all r, we give the exact value of the best possible density of an r-identifying code in the king lattice, i.e., the infinite two-dimensional square lattice with two diagonals. (C) 2003 Published by Elsevier B.V.