A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein
Tekijät: Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH
Kustantaja: AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Julkaisuvuosi: 2000
Lehti:: Journal of Biological Chemistry
Tietokannassa oleva lehden nimi: JOURNAL OF BIOLOGICAL CHEMISTRY
Lehden akronyymi: J BIOL CHEM
Vuosikerta: 275
Numero: 33
Aloitussivu: 25733
Lopetussivu: 25741
Sivujen määrä: 9
ISSN: 0021-9258
DOI: https://doi.org/10.1074/jbc.M002740200
Tiivistelmä
The von Hippel-Lindau tumor suppressor protein (pVHL) has emerged as a key factor in cellular responses to oxygen availability, being required for the oxygen-dependent proteolysis of alpha subunits of hypoxia inducible factor-1 (HIF), Mutations in VHL cause a hereditary cancer syndrome associated with dysregulated angiogenesis, and up-regulation of hypoxia inducible genes, Here we investigate the mechanisms underlying these processes and show that extracts from VHL-deficient renal carcinoma cells have a defect in HIF-alpha ubiquitylation activity which is complemented by exogenous pVHL, This defect was specific for HIF-alpha among a range of substrates tested. Furthermore, HIF-alpha subunits were the only pVHL-associated proteasomal substrates identified by comparison of metabolically labeled anti-pVHL immunoprecipitates from proteosomally inhibited cells and normal cells. Analysis of pVHL/HIF-alpha interactions defined short sequences of conserved residues within the internal transactivation domains of HIF-alpha molecules sufficient for recognition by pVHL, In contrast, while full-length pVHL and the p19 variant interact with HIF-alpha, the association was abrogated by further N-terminal and C-terminal truncations. The interaction was also disrupted by tumor-associated mutations in the beta-domain of pVHL and loss of interaction was associated with defective HIF-alpha ubiquitylation and regulation, defining a mechanism by which these mutations generate a constitutively hypoxic pattern of gene expression promoting angiogenesis, The findings indicate that pVHL regulates HIF-alpha proteolysis by acting as the recognition component of a ubiquitin ligase complex, and support a model in which its beta domain interacts with short recognition sequences in HIF-alpha subunits.
The von Hippel-Lindau tumor suppressor protein (pVHL) has emerged as a key factor in cellular responses to oxygen availability, being required for the oxygen-dependent proteolysis of alpha subunits of hypoxia inducible factor-1 (HIF), Mutations in VHL cause a hereditary cancer syndrome associated with dysregulated angiogenesis, and up-regulation of hypoxia inducible genes, Here we investigate the mechanisms underlying these processes and show that extracts from VHL-deficient renal carcinoma cells have a defect in HIF-alpha ubiquitylation activity which is complemented by exogenous pVHL, This defect was specific for HIF-alpha among a range of substrates tested. Furthermore, HIF-alpha subunits were the only pVHL-associated proteasomal substrates identified by comparison of metabolically labeled anti-pVHL immunoprecipitates from proteosomally inhibited cells and normal cells. Analysis of pVHL/HIF-alpha interactions defined short sequences of conserved residues within the internal transactivation domains of HIF-alpha molecules sufficient for recognition by pVHL, In contrast, while full-length pVHL and the p19 variant interact with HIF-alpha, the association was abrogated by further N-terminal and C-terminal truncations. The interaction was also disrupted by tumor-associated mutations in the beta-domain of pVHL and loss of interaction was associated with defective HIF-alpha ubiquitylation and regulation, defining a mechanism by which these mutations generate a constitutively hypoxic pattern of gene expression promoting angiogenesis, The findings indicate that pVHL regulates HIF-alpha proteolysis by acting as the recognition component of a ubiquitin ligase complex, and support a model in which its beta domain interacts with short recognition sequences in HIF-alpha subunits.