The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT




Raiteri CM, Villata M, D'Ammando F, Larionov VM, Gurwell MA, Mirzaqulov DO, Smith PS, Acosta-Pulido JA, Agudo I, Arevalo MJ, Bachev R, Benitez E, Berdyugin A, Blinov DA, Borman GA, Bottcher M, Bozhilov V, Carnerero MI, Carosati D, Casadio C, Chen WP, Doroshenko VT, Efimova YS, Efimova NV, Ehgamberdiev SA, Gomez JL, Gonzalez-Morales PA, Hiriart D, Ibryamov S, Jadhav Y, Jorstad SG, Joshi M, Kadenius V, Klimanov SA, Kohli M, Konstantinova TS, Kopatskaya EN, Koptelova E, Kimeridze G, Kurtanidze OM, Larionova EG, Larionova LV, Ligustri R, Lindfors E, Marscher AP, McBreen B, McHardy IM, Metodieva Y, Molina SN, Morozova DA, Nazarov SV, Nikolashvili MG, Nilsson K, Okhmat DN, Ovcharov E, Panwar N, Pasanen M, Peneva S, Phipps J, Pulatova NG, Reinthal R, Ros JA, Sadun AC, Schwartz RD, Semkov E, Sergeev SG, Sigua LA, Sillanpaa A, Smith N, Stoyanov K, Strigachev A, Takalo LO, Taylor B, Thum C, Troitsky IS, Valcheva A, Wehrle AE, Wiesemeyer H

PublisherOXFORD UNIV PRESS

2013

Monthly Notices of the Royal Astronomical Society

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

MON NOT R ASTRON SOC

2

436

2

1530

1545

16

0035-8711

DOIhttps://doi.org/10.1093/mnras/stt1672



Since the launch of the Fermi satellite, BL Lacertae has been moderately active at gamma-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily gamma-ray observations by Fermi. Discrete correlation analysis between the optical and gamma-ray emission reveals correlation with a time lag of 0 +/- 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding gamma-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and gamma-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15 degrees, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011-2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.



Last updated on 2024-26-11 at 17:59