A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Carmichael numbers in arithmetic progressions
Tekijät: Matomaki K
Kustantaja: CAMBRIDGE UNIV PRESS
Julkaisuvuosi: 2013
Journal: Journal of the Australian Mathematical Society
Tietokannassa oleva lehden nimi: JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY
Lehden akronyymi: J AUST MATH SOC
Numero sarjassa: 2
Vuosikerta: 94
Numero: 2
Aloitussivu: 268
Lopetussivu: 275
Sivujen määrä: 8
ISSN: 1446-7887
DOI: https://doi.org/10.1017/S1446788712000547
Tiivistelmä
We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x^(1/5) when x is large enough (depending on m).
We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x^(1/5) when x is large enough (depending on m).
Ladattava julkaisu This is an electronic reprint of the original article. |