A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Heterogeneous Parallelization of Aho-Corasick Algorithm




TekijätShima Soroushnia, Masoud Daneshtalab, Juha Plosila, Pasi Liljeberg

ToimittajaJulio Saez-Rodriguez, Miguel P. Rocha, Florentino Fdez-Riverola, Juan F. De Paz Santana

Konferenssin vakiintunut nimiInternational Conference on Practical Applications of Computational Biology

KustantajaSPRINGER-VERLAG NEW YORK, MS INGRID CUNNINGHAM, 175 FIFTH AVE, NEW YORK, NY 10010 USA

Julkaisuvuosi2014

Kokoomateoksen nimi8th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014)

Tietokannassa oleva lehden nimi8TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS (PACBB 2014)

Lehden akronyymiADV INTELL SYST

Vuosikerta294

Aloitussivu153

Lopetussivu160

Sivujen määrä8

ISBN978-3-319-07580-8

ISSN2194-5357

DOIhttps://doi.org/10.1007/978-3-319-07581-5_19


Tiivistelmä

Pattern discovery is one of the fundamental tasks in bioinformatics and pattern recognition is a powerful technique for searching sequence patterns in the biological sequence databases. The significant increase in the number of DNA and protein sequences expands the need for raising the performance of pattern matching algorithms. For this purpose, heterogeneous architectures can be a good choice due to their potential for high performance and energy efficiency. In this paper we present an efficient implementation of Aho-Corasick (AC) and PFAC (Parallel Failureless Aho-Corasick) algorithm on a heterogeneous CPU/GPU architecture. We progressively redesigned the algorithms and data structures to fit on the GPU architecture. Our results on different protein sequence data sets show 15% speedup comparing to the original implementation of the PFAC algorithm.




Last updated on 2024-26-11 at 20:29