A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Compactness of systems of equations in semigroups




TekijätHarju T, Karhumaki J, Plandowski W

Julkaisuvuosi1995

Lehti:Lecture Notes in Computer Science

Tietokannassa oleva lehden nimiAUTOMATA, LANGUAGES AND PROGRAMMING

Lehden akronyymiLECT NOTES COMPUT SC

Vuosikerta944

Aloitussivu444

Lopetussivu454

Sivujen määrä11

ISBN3-540-60084-1

ISSN0302-9743


Tiivistelmä
We consider systems u(i) = v(i) (i epsilon I) of equations in semigroups over finite sets of variables. A semigroup S is said to satisfy the compactness property (or CP, for short), if each system of equations has an equivalent finite subsystem. It is shown that all monoids in a variety V satisfy CP, if and only if the finitely generated monoids in V satisfy the maximal condition on congruences. We also show that if a finitely generated semigroup S satisfies CP, then S is necessarily hopfian and satisfies the chain condition on idempotents. Finally, we give three simple examples (the bicyclic monoid, the free monogenic inverse semigroup and the Baumslag-Solitar group) which do not satisfy CP, and show that the above necessary conditions are not sufficient.


Research Areas



Last updated on 2025-13-10 at 12:27