A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Equality sets for recursively enumerable languages




TekijätHalava V, Harju T, Hoogeboom HJ, Latteux M

KustantajaEDP SCIENCES S A

Julkaisuvuosi2005

Lehti:RAIRO: Informatique Théorique et Applications / RAIRO: Theoretical Informatics and Applications

Tietokannassa oleva lehden nimiRAIRO-THEORETICAL INFORMATICS AND APPLICATIONS

Lehden akronyymiRAIRO-THEOR INF APPL

Vuosikerta39

Numero4

Aloitussivu661

Lopetussivu675

Sivujen määrä15

ISSN0988-3754

DOIhttps://doi.org/10.1051/ita:2005035


Tiivistelmä
We consider shifted equality sets of the form E-G(a, g(1), g(2)) = {w | g(1)( w) = ag(2)( w)}, where g(1) and g(2) are nonerasing morphisms and a is a letter. We are interested in the family consisting of the languages h(E-G( J)), where h is a coding and E-G(J) is a shifted equality set. We prove several closure properties for this family. Moreover, we show that every recursively enumerable language L subset of A* is a projection of a shifted equality set, that is, L = pi(A)(E-G(a, g(1), g(2))) for some ( nonerasing) morphisms g(1) and g(2) and a letter a, where pi(A) deletes the letters not in A. Then we deduce that recursively enumerable star languages coincide with the projections of equality sets.


Research Areas



Last updated on 2025-14-10 at 09:52