Refereed journal article or data article (A1)

Human Tumor-Derived Matrix Improves the Predictability of Head and Neck Cancer Drug Testing




List of AuthorsTuomainen K, Al-Samadi A, Potdar S, Turunen L, Turunen M, Karhemo PR, Bergman P, Risteli M, Åström P, Tiikkaja R, Grenman R, Wennerberg K, Monni O, Salo T

Publication year2020

JournalCancers

Volume number12

Issue number1

Number of pages15

DOIhttp://dx.doi.org/10.3390/cancers12010092

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/44376433


Abstract

In vitro cancer drug testing carries a low predictive value. We developed the human leiomyoma–derived matrix “Myogel” to better mimic the human tumor microenvironment (TME). We hypothesized that Myogel could provide an appropriate microenvironment for cancer cells, thereby allowing more in vivo–relevant drug testing. We screened 19 anticancer compounds, targeting the epidermal growth factor receptor (EGFR), MEK, and PI3K/mTOR on 12 head and neck squamous cell carcinoma (HNSCC) cell lines cultured on plastic, mouse sarcoma–derived Matrigel (MSDM), and Myogel. We applied a high-throughput drug screening assay under five different culturing conditions: cells in two-dimensional (2D) plastic wells and on top or embedded in Matrigel or Myogel. We then compared the efficacy of the anticancer compounds to the response rates of 19 HNSCC monotherapy clinical trials. Cancer cells on top of Myogel responded less to EGFR and MEK inhibitors compared to cells cultured on plastic or Matrigel. However, we found a similar response to the PI3K/mTOR inhibitors under all culturing conditions. Cells grown on Myogel more closely resembled the response rates reported in EGFR-inhibitor monotherapy clinical trials. Our findings suggest that a human tumor matrix improves the predictability of in vitro anticancer drug testing compared to current 2D and MSDM methods


Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2022-07-04 at 17:45