A1 Journal article – refereed
Catalytically inactive carbonic anhydrase-related proteins enhance transport of lactate by MCT1

List of Authors: Aspatwar A., Tolvanen M.E.E., Schneider H-P., Becker H.M., Narkilahti S., Parkkila S., Deitmer J.W.
Publisher: WILEY
Publication year: 2019
Journal: FEBS Open Bio
Journal name in source: FEBS OPEN BIO
Journal acronym: FEBS OPEN BIO
Volume number: 9
Issue number: 7
Number of pages: 8
ISSN: 2211-5463

Carbonic anhydrases (CA) catalyze the reversible hydration of CO2 to protons and bicarbonate and thereby play a fundamental role in the epithelial acid/base transport mechanisms serving fluid secretion and absorption for whole-body acid/base regulation. The three carbonic anhydrase-related proteins (CARPs) VIII, X, and XI, however, are catalytically inactive. Previous work has shown that some CA isoforms noncatalytically enhance lactate transport through various monocarboxylate transporters (MCT). Therefore, we examined whether the catalytically inactive CARPs play a role in lactate transport. Here, we report that CARP VIII, X, and XI enhance transport activity of the MCT MCT1 when coexpressed in Xenopus oocytes, as evidenced by the rate of rise in intracellular H+ concentration detected using ion-sensitive microelectrodes. Based on previous studies, we suggest that CARPs may function as a 'proton antenna' for MCT1, to drive proton-coupled lactate transport across the cell membrane.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.

Last updated on 2019-21-08 at 21:47