A1 Journal article – refereed
Dense matter with eXTP

List of Authors: Watts AL, Yu WF, Poutanen J, Zhang S, Bhattacharyya S, Bogdanov S, Ji L, Patruno A, Riley TE, Bakala P, Baykal A, Bernardini F, Bombaci I, Brown E, Cavecchi Y, Chakrabarty D, Chenevez J, Degenaar N, Del Santo M, Di Salvo T, Doroshenko V, Falanga M, Ferdman RD, Feroci M, Gambino AF, Ge MY, Greif SK, Guillot S, Gungor C, Hartmann DH, Hebeler K, Heger A, Homan J, Iaria R, in 't Zand J, Kargaltsev O, Kurkela A, Lai XY, Li A, Li XD, Li ZS, Linares M, Lu FJ, Mahmoodifar S, Mendez M, Miller MC, Morsink S, Nattila J, Possenti A, Prescod-Weinstein C, Qu JL, Riggio A, Salmi T, Sanna A, Santangelo A, Schatz H, Schwenk A, Song LM, Sramkova E, Stappers B, Stiele H, Strohmayer T, Tews I, Tolos L, Torok G, Tsang D, Urbanec M, Vacchi A, Xu RX, Xu YP, Zane S, Zhang GB, Zhang SN, Zhang WD, Zheng SJ, Zhou X, Zhou X
Publication year: 2019
Journal: SCIENCE CHINA Physics, Mechanics and Astronomy
Journal acronym: SCI CHINA PHYS MECH
Title of series: Science China Physics, Mechanics & Astronomy
Volume number: 62
Number of pages: 17
ISSN: 1674-7348

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.

Last updated on 2019-26-03 at 14:04